3510. Minimum Pair Removal to Sort Array II LeetCode Solution

In this guide, you will get 3510. Minimum Pair Removal to Sort Array II LeetCode Solution with the best time and space complexity. The solution to Minimum Pair Removal to Sort Array II problem is provided in various programming languages like C++, Java, and Python. This will be helpful for you if you are preparing for placements, hackathons, interviews, or practice purposes. The solutions provided here are very easy to follow and include detailed explanations.

Table of Contents

  1. Problem Statement
  2. Complexity Analysis
  3. Minimum Pair Removal to Sort Array II solution in C++
  4. Minimum Pair Removal to Sort Array II solution in Java
  5. Minimum Pair Removal to Sort Array II solution in Python
  6. Additional Resources
3510. Minimum Pair Removal to Sort Array II LeetCode Solution image

Problem Statement of Minimum Pair Removal to Sort Array II

Given an array nums, you can perform the following operation any number of times:

Select the adjacent pair with the minimum sum in nums. If multiple such pairs exist, choose the leftmost one.
Replace the pair with their sum.

Return the minimum number of operations needed to make the array non-decreasing.
An array is said to be non-decreasing if each element is greater than or equal to its previous element (if it exists).

Example 1:

Input: nums = [5,2,3,1]
Output: 2
Explanation:

The pair (3,1) has the minimum sum of 4. After replacement, nums = [5,2,4].
The pair (2,4) has the minimum sum of 6. After replacement, nums = [5,6].

The array nums became non-decreasing in two operations.

Example 2:

Input: nums = [1,2,2]
Output: 0
Explanation:
The array nums is already sorted.

Constraints:

1 <= nums.length <= 105
-109 <= nums[i] <= 109

Complexity Analysis

  • Time Complexity: O(n\log n)
  • Space Complexity: O(n)

3510. Minimum Pair Removal to Sort Array II LeetCode Solution in C++

class Solution {
 public:
  int minimumPairRemoval(vector<int>& nums) {
    const int n = nums.size();
    int ans = 0;
    int inversionsCount = 0;
    vector<int> nextIndices(n);
    vector<int> prevIndices(n);
    vector<long> values(nums.begin(), nums.end());

    // Custom comparator for the set
    auto comp = [](const pair<long, int>& a, const pair<long, int>& b) {
      return a.first < b.first || (a.first == b.first && a.second < b.second);
    };
    set<pair<long, int>, decltype(comp)> pairSums(comp);

    for (int i = 0; i < n; ++i) {
      nextIndices[i] = i + 1;
      prevIndices[i] = i - 1;
    }

    for (int i = 0; i < n - 1; ++i)
      pairSums.insert({(long)nums[i] + nums[i + 1], i});

    for (int i = 0; i < n - 1; ++i)
      if (nums[i + 1] < nums[i])
        ++inversionsCount;

    while (inversionsCount > 0) {
      ++ans;
      auto smallestPair = *pairSums.begin();
      pairSums.erase(pairSums.begin());

      const long pairSum = smallestPair.first;
      const int currIndex = smallestPair.second;
      const int nextIndex = nextIndices[currIndex];
      const int prevIndex = prevIndices[currIndex];

      if (prevIndex >= 0) {
        const long oldPairSum = values[prevIndex] + values[currIndex];
        const long newPairSum = values[prevIndex] + pairSum;
        pairSums.erase({oldPairSum, prevIndex});
        pairSums.insert({newPairSum, prevIndex});
        if (values[prevIndex] > values[currIndex])
          --inversionsCount;
        if (values[prevIndex] > pairSum)
          ++inversionsCount;
      }

      if (values[nextIndex] < values[currIndex])
        --inversionsCount;

      const int nextNextIndex = (nextIndex < n) ? nextIndices[nextIndex] : n;
      if (nextNextIndex < n) {
        const long oldPairSum = values[nextIndex] + values[nextNextIndex];
        const long newPairSum = pairSum + values[nextNextIndex];
        pairSums.erase({oldPairSum, nextIndex});
        pairSums.insert({newPairSum, currIndex});
        if (values[nextNextIndex] < values[nextIndex])
          --inversionsCount;
        if (values[nextNextIndex] < pairSum)
          ++inversionsCount;
        prevIndices[nextNextIndex] = currIndex;
      }

      nextIndices[currIndex] = nextNextIndex;
      values[currIndex] = pairSum;
    }

    return ans;
  }
};
/* code provided by PROGIEZ */

3510. Minimum Pair Removal to Sort Array II LeetCode Solution in Java

class Solution {
  public int minimumPairRemoval(int[] nums) {
    final int n = nums.length;
    int ans = 0;
    int inversionsCount = 0;
    int[] nextIndices = new int[n];
    int[] prevIndices = new int[n];
    long[] values = Arrays.stream(nums).mapToLong(i -> i).toArray();
    TreeSet<Pair<Long, Integer>> pairSums =
        new TreeSet<>(Comparator.comparingLong(Pair<Long, Integer>::getKey)
                          .thenComparingInt(Pair<Long, Integer>::getValue));

    for (int i = 0; i < n; ++i) {
      nextIndices[i] = i + 1;
      prevIndices[i] = i - 1;
    }

    for (int i = 0; i < n - 1; ++i)
      pairSums.add(new Pair<>((long) nums[i] + nums[i + 1], i));

    for (int i = 0; i < n - 1; ++i)
      if (nums[i + 1] < nums[i])
        ++inversionsCount;

    while (inversionsCount > 0) {
      ++ans;
      Pair<Long, Integer> smallestPair = pairSums.pollFirst();
      final long pairSum = smallestPair.getKey();
      final int currIndex = smallestPair.getValue();
      final int nextIndex = nextIndices[currIndex];
      final int prevIndex = prevIndices[currIndex];
      if (prevIndex >= 0) {
        final long oldPairSum = values[prevIndex] + values[currIndex];
        final long newPairSum = values[prevIndex] + pairSum;
        pairSums.remove(new Pair<>(oldPairSum, prevIndex));
        pairSums.add(new Pair<>(newPairSum, prevIndex));
        if (values[prevIndex] > values[currIndex])
          --inversionsCount;
        if (values[prevIndex] > pairSum)
          ++inversionsCount;
      }

      if (values[nextIndex] < values[currIndex])
        --inversionsCount;

      final int nextNextIndex = (nextIndex < n) ? nextIndices[nextIndex] : n;
      if (nextNextIndex < n) {
        final long oldPairSum = values[nextIndex] + values[nextNextIndex];
        final long newPairSum = pairSum + values[nextNextIndex];
        pairSums.remove(new Pair<>(oldPairSum, nextIndex));
        pairSums.add(new Pair<>(newPairSum, currIndex));
        if (values[nextNextIndex] < values[nextIndex])
          --inversionsCount;
        if (values[nextNextIndex] < pairSum)
          ++inversionsCount;
        prevIndices[nextNextIndex] = currIndex;
      }

      nextIndices[currIndex] = nextNextIndex;
      values[currIndex] = pairSum;
    }

    return ans;
  }
}
// code provided by PROGIEZ

3510. Minimum Pair Removal to Sort Array II LeetCode Solution in Python

from sortedcontainers import SortedList


class Solution:
  def minimumPairRemoval(self, nums: list[int]) -> int:
    n = len(nums)
    ans = 0
    inversionsCount = sum(nums[i + 1] < nums[i] for i in range(n - 1))
    nextIndices = [i + 1 for i in range(n)]
    prevIndices = [i - 1 for i in range(n)]
    pairSums = SortedList((a + b, i)
                          for i, (a, b) in enumerate(itertools.pairwise(nums)))

    while inversionsCount > 0:
      ans += 1
      smallestPair = pairSums.pop(0)
      pairSum, currIndex = smallestPair
      nextIndex = nextIndices[currIndex]
      prevIndex = prevIndices[currIndex]

      if prevIndex >= 0:
        oldPairSum = nums[prevIndex] + nums[currIndex]
        newPairSum = nums[prevIndex] + pairSum
        pairSums.remove((oldPairSum, prevIndex))
        pairSums.add((newPairSum, prevIndex))
        if nums[prevIndex] > nums[currIndex]:
          inversionsCount -= 1
        if nums[prevIndex] > pairSum:
          inversionsCount += 1

      if nums[nextIndex] < nums[currIndex]:
        inversionsCount -= 1

      nextNextIndex = nextIndices[nextIndex] if nextIndex < n else n
      if nextNextIndex < n:
        oldPairSum = nums[nextIndex] + nums[nextNextIndex]
        newPairSum = pairSum + nums[nextNextIndex]
        pairSums.remove((oldPairSum, nextIndex))
        pairSums.add((newPairSum, currIndex))
        if nums[nextNextIndex] < nums[nextIndex]:
          inversionsCount -= 1
        if nums[nextNextIndex] < pairSum:
          inversionsCount += 1
        prevIndices[nextNextIndex] = currIndex

      nextIndices[currIndex] = nextNextIndex
      nums[currIndex] = pairSum

    return ans
# code by PROGIEZ

Additional Resources

Happy Coding! Keep following PROGIEZ for more updates and solutions.