3382. Maximum Area Rectangle With Point Constraints II LeetCode Solution

In this guide, you will get 3382. Maximum Area Rectangle With Point Constraints II LeetCode Solution with the best time and space complexity. The solution to Maximum Area Rectangle With Point Constraints II problem is provided in various programming languages like C++, Java, and Python. This will be helpful for you if you are preparing for placements, hackathons, interviews, or practice purposes. The solutions provided here are very easy to follow and include detailed explanations.

Table of Contents

  1. Problem Statement
  2. Complexity Analysis
  3. Maximum Area Rectangle With Point Constraints II solution in C++
  4. Maximum Area Rectangle With Point Constraints II solution in Java
  5. Maximum Area Rectangle With Point Constraints II solution in Python
  6. Additional Resources
3382. Maximum Area Rectangle With Point Constraints II LeetCode Solution image

Problem Statement of Maximum Area Rectangle With Point Constraints II

There are n points on an infinite plane. You are given two integer arrays xCoord and yCoord where (xCoord[i], yCoord[i]) represents the coordinates of the ith point.
Your task is to find the maximum area of a rectangle that:

Can be formed using four of these points as its corners.
Does not contain any other point inside or on its border.
Has its edges parallel to the axes.

Return the maximum area that you can obtain or -1 if no such rectangle is possible.

Example 1:

Input: xCoord = [1,1,3,3], yCoord = [1,3,1,3]
Output: 4
Explanation:

We can make a rectangle with these 4 points as corners and there is no other point that lies inside or on the border. Hence, the maximum possible area would be 4.

Example 2:

Input: xCoord = [1,1,3,3,2], yCoord = [1,3,1,3,2]
Output: -1
Explanation:

See also  1373. Maximum Sum BST in Binary Tree LeetCode Solution

There is only one rectangle possible is with points [1,1], [1,3], [3,1] and [3,3] but [2,2] will always lie inside it. Hence, returning -1.

Example 3:

Input: xCoord = [1,1,3,3,1,3], yCoord = [1,3,1,3,2,2]
Output: 2
Explanation:

The maximum area rectangle is formed by the points [1,3], [1,2], [3,2], [3,3], which has an area of 2. Additionally, the points [1,1], [1,2], [3,1], [3,2] also form a valid rectangle with the same area.

Constraints:

1 <= xCoord.length == yCoord.length <= 2 * 105
0 <= xCoord[i], yCoord[i] <= 8 * 107
All the given points are unique.

Complexity Analysis

  • Time Complexity: O(n\log n)
  • Space Complexity: O(n)

3382. Maximum Area Rectangle With Point Constraints II LeetCode Solution in C++

class SegmentTree {
 public:
  explicit SegmentTree(int n, int kInf) : kInf(kInf), n(n), tree(4 * n, kInf) {}

  // Updates nums[i] to val.
  void update(int i, int val) {
    update(0, 0, n - 1, i, val);
  }

  // Returns min(nums[i..j]).
  int query(int i, int j) const {
    return query(0, 0, n - 1, i, j);
  }

 private:
  const int kInf;    // the invalid value
  const int n;       // the size of the input array
  vector<int> tree;  // the segment tree

  void update(int treeIndex, int lo, int hi, int i, int val) {
    if (lo == hi) {
      tree[treeIndex] = val;
      return;
    }
    const int mid = (lo + hi) / 2;
    if (i <= mid)
      update(2 * treeIndex + 1, lo, mid, i, val);
    else
      update(2 * treeIndex + 2, mid + 1, hi, i, val);
    tree[treeIndex] = merge(tree[2 * treeIndex + 1], tree[2 * treeIndex + 2]);
  }

  int query(int treeIndex, int lo, int hi, int i, int j) const {
    if (i <= lo && hi <= j)  // [lo, hi] lies completely inside [i, j].
      return tree[treeIndex];
    if (j < lo || hi < i)  // [lo, hi] lies completely outside [i, j].
      return kInf;
    const int mid = (lo + hi) / 2;
    return merge(query(treeIndex * 2 + 1, lo, mid, i, j),
                 query(treeIndex * 2 + 2, mid + 1, hi, i, j));
  }

  int merge(int left, int right) const {
    return max(left, right);
  }
};

class Solution {
 public:
  // Same as 3380. Maximum Area Rectangle With Point Constraints I
  long long maxRectangleArea(vector<int>& xCoord, vector<int>& yCoord) {
    long ans = -1;
    const vector<pair<int, int>> points = getSortedPoints(xCoord, yCoord);
    const vector<int> ys = getUniqueAndSortedYs(yCoord);
    SegmentTree tree(ys.size(), /*kInf=*/-1);
    unordered_map<int, int> yToIndex;
    unordered_map<int, int> yToX;

    for (int i = 0; i < ys.size(); ++i)
      yToIndex[ys[i]] = i;

    auto [prevX, prevY] = points[0];
    for (int i = 1; i < points.size(); ++i) {
      const auto [x, y] = points[i];
      if (yToX.contains(prevY) && yToX.contains(y)) {
        const int xLeft = yToX[y];
        if (prevX == x && yToX[prevY] == xLeft &&
            xLeft > tree.query(yToIndex[prevY] + 1, yToIndex[y] - 1))
          ans = max(ans, static_cast<long>(y - prevY) * (x - xLeft));
      }
      yToX[prevY] = prevX;
      tree.update(yToIndex[prevY], prevX);
      prevX = x;
      prevY = y;
    }

    return ans;
  }

 private:
  vector<pair<int, int>> getSortedPoints(const vector<int>& xCoord,
                                         const vector<int>& yCoord) {
    vector<pair<int, int>> points;
    for (int i = 0; i < xCoord.size(); ++i)
      points.emplace_back(xCoord[i], yCoord[i]);
    ranges::sort(points);
    return points;
  }

  vector<int> getUniqueAndSortedYs(const vector<int>& yCoord) {
    vector<int> ys = yCoord;
    ranges::sort(ys);
    ys.erase(unique(ys.begin(), ys.end()), ys.end());
    return ys;
  }
};
/* code provided by PROGIEZ */

3382. Maximum Area Rectangle With Point Constraints II LeetCode Solution in Java

N/A
// code provided by PROGIEZ

3382. Maximum Area Rectangle With Point Constraints II LeetCode Solution in Python

N/A
# code by PROGIEZ

Additional Resources

See also  1770. Maximum Score from Performing Multiplication Operations LeetCode Solution

Happy Coding! Keep following PROGIEZ for more updates and solutions.