3123. Find Edges in Shortest Paths LeetCode Solution
In this guide, you will get 3123. Find Edges in Shortest Paths LeetCode Solution with the best time and space complexity. The solution to Find Edges in Shortest Paths problem is provided in various programming languages like C++, Java, and Python. This will be helpful for you if you are preparing for placements, hackathons, interviews, or practice purposes. The solutions provided here are very easy to follow and include detailed explanations.
Table of Contents
- Problem Statement
- Complexity Analysis
- Find Edges in Shortest Paths solution in C++
- Find Edges in Shortest Paths solution in Java
- Find Edges in Shortest Paths solution in Python
- Additional Resources

Problem Statement of Find Edges in Shortest Paths
You are given an undirected weighted graph of n nodes numbered from 0 to n – 1. The graph consists of m edges represented by a 2D array edges, where edges[i] = [ai, bi, wi] indicates that there is an edge between nodes ai and bi with weight wi.
Consider all the shortest paths from node 0 to node n – 1 in the graph. You need to find a boolean array answer where answer[i] is true if the edge edges[i] is part of at least one shortest path. Otherwise, answer[i] is false.
Return the array answer.
Note that the graph may not be connected.
Example 1:
Input: n = 6, edges = [[0,1,4],[0,2,1],[1,3,2],[1,4,3],[1,5,1],[2,3,1],[3,5,3],[4,5,2]]
Output: [true,true,true,false,true,true,true,false]
Explanation:
The following are all the shortest paths between nodes 0 and 5:
The path 0 -> 1 -> 5: The sum of weights is 4 + 1 = 5.
The path 0 -> 2 -> 3 -> 5: The sum of weights is 1 + 1 + 3 = 5.
The path 0 -> 2 -> 3 -> 1 -> 5: The sum of weights is 1 + 1 + 2 + 1 = 5.
Example 2:
Input: n = 4, edges = [[2,0,1],[0,1,1],[0,3,4],[3,2,2]]
Output: [true,false,false,true]
Explanation:
There is one shortest path between nodes 0 and 3, which is the path 0 -> 2 -> 3 with the sum of weights 1 + 2 = 3.
Constraints:
2 <= n <= 5 * 104
m == edges.length
1 <= m <= min(5 * 104, n * (n – 1) / 2)
0 <= ai, bi < n
ai != bi
1 <= wi <= 105
There are no repeated edges.
Complexity Analysis
- Time Complexity: O(|V|\log |E|)
- Space Complexity: O(n)
3123. Find Edges in Shortest Paths LeetCode Solution in C++
class Solution {
public:
// Similar to 2203. Minimum Weighted Subgraph With the Required Paths
vector<bool> findAnswer(int n, vector<vector<int>>& edges) {
vector<bool> ans;
vector<vector<pair<int, int>>> graph(n);
for (const vector<int>& edge : edges) {
const int u = edge[0];
const int v = edge[1];
const int w = edge[2];
graph[u].emplace_back(v, w);
graph[v].emplace_back(u, w);
}
const vector<int> from0 = dijkstra(graph, 0);
const vector<int> from1 = dijkstra(graph, n - 1);
for (const vector<int>& edge : edges) {
const int u = edge[0];
const int v = edge[1];
const int w = edge[2];
ans.push_back(from0[u] + w + from1[v] == from0[n - 1] ||
from0[v] + w + from1[u] == from0[n - 1]);
}
return ans;
}
private:
static constexpr int kMax = 1'000'000'000;
vector<int> dijkstra(const vector<vector<pair<int, int>>>& graph, int src) {
vector<int> dist(graph.size(), kMax);
dist[src] = 0;
using P = pair<int, int>; // (d, u)
priority_queue<P, vector<P>, greater<>> minHeap;
minHeap.emplace(dist[src], src);
while (!minHeap.empty()) {
const auto [d, u] = minHeap.top();
minHeap.pop();
if (d > dist[u])
continue;
for (const auto& [v, w] : graph[u])
if (d + w < dist[v]) {
dist[v] = d + w;
minHeap.emplace(dist[v], v);
}
}
return dist;
}
};
/* code provided by PROGIEZ */
3123. Find Edges in Shortest Paths LeetCode Solution in Java
class Solution {
// Similar to 2203. Minimum Weighted Subgraph With the Required Paths
public boolean[] findAnswer(int n, int[][] edges) {
boolean[] ans = new boolean[edges.length];
List<Pair<Integer, Integer>>[] graph = new List[n];
for (int i = 0; i < n; ++i)
graph[i] = new ArrayList<>();
for (int[] edge : edges) {
final int u = edge[0];
final int v = edge[1];
final int w = edge[2];
graph[u].add(new Pair<>(v, w));
graph[v].add(new Pair<>(u, w));
}
int[] from0 = dijkstra(graph, 0);
int[] from1 = dijkstra(graph, n - 1);
for (int i = 0; i < edges.length; ++i) {
final int u = edges[i][0];
final int v = edges[i][1];
final int w = edges[i][2];
ans[i] = from0[u] + w + from1[v] == from0[n - 1] || //
from0[v] + w + from1[u] == from0[n - 1];
}
return ans;
}
private static int kMax = 1_000_000_000;
private int[] dijkstra(List<Pair<Integer, Integer>>[] graph, int src) {
int[] dist = new int[graph.length];
Arrays.fill(dist, kMax);
dist[src] = 0;
Queue<Pair<Integer, Integer>> minHeap =
new PriorityQueue<>(Comparator.comparing(Pair::getKey)) {
{ offer(new Pair<>(dist[src], src)); } // (d, u)
};
while (!minHeap.isEmpty()) {
final int d = minHeap.peek().getKey();
final int u = minHeap.poll().getValue();
if (d > dist[u])
continue;
for (Pair<Integer, Integer> pair : graph[u]) {
final int v = pair.getKey();
final int w = pair.getValue();
if (d + w < dist[v]) {
dist[v] = d + w;
minHeap.offer(new Pair<>(dist[v], v));
}
}
}
return dist;
}
};
// code provided by PROGIEZ
3123. Find Edges in Shortest Paths LeetCode Solution in Python
class Solution:
# Similar to 2203. Minimum Weighted Subgraph With the Required Paths
def findAnswer(self, n: int, edges: list[list[int]]) -> list[bool]:
graph = [[] for _ in range(n)]
for u, v, w in edges:
graph[u].append((v, w))
graph[v].append((u, w))
from0 = self._dijkstra(graph, 0)
from1 = self._dijkstra(graph, n - 1)
return [from0[u] + w + from1[v] == from0[-1] or
from0[v] + w + from1[u] == from0[-1]
for u, v, w in edges]
def _dijkstra(
self,
graph: list[list[tuple[int, int]]],
src: int,
) -> list[int]:
dist = [10**9] * len(graph)
dist[src] = 0
minHeap = [(dist[src], src)] # (d, u)
while minHeap:
d, u = heapq.heappop(minHeap)
if d > dist[u]:
continue
for v, w in graph[u]:
if d + w < dist[v]:
dist[v] = d + w
heapq.heappush(minHeap, (dist[v], v))
return dist
# code by PROGIEZ
Additional Resources
- Explore all LeetCode problem solutions at Progiez here
- Explore all problems on LeetCode website here
Happy Coding! Keep following PROGIEZ for more updates and solutions.