2762. Continuous Subarrays LeetCode Solution
In this guide, you will get 2762. Continuous Subarrays LeetCode Solution with the best time and space complexity. The solution to Continuous Subarrays problem is provided in various programming languages like C++, Java, and Python. This will be helpful for you if you are preparing for placements, hackathons, interviews, or practice purposes. The solutions provided here are very easy to follow and include detailed explanations.
Table of Contents
- Problem Statement
- Complexity Analysis
- Continuous Subarrays solution in C++
- Continuous Subarrays solution in Java
- Continuous Subarrays solution in Python
- Additional Resources

Problem Statement of Continuous Subarrays
You are given a 0-indexed integer array nums. A subarray of nums is called continuous if:
Let i, i + 1, …, j be the indices in the subarray. Then, for each pair of indices i <= i1, i2 <= j, 0 <= |nums[i1] – nums[i2]| <= 2.
Return the total number of continuous subarrays.
A subarray is a contiguous non-empty sequence of elements within an array.
Example 1:
Input: nums = [5,4,2,4]
Output: 8
Explanation:
Continuous subarray of size 1: [5], [4], [2], [4].
Continuous subarray of size 2: [5,4], [4,2], [2,4].
Continuous subarray of size 3: [4,2,4].
There are no subarrys of size 4.
Total continuous subarrays = 4 + 3 + 1 = 8.
It can be shown that there are no more continuous subarrays.
Example 2:
Input: nums = [1,2,3]
Output: 6
Explanation:
Continuous subarray of size 1: [1], [2], [3].
Continuous subarray of size 2: [1,2], [2,3].
Continuous subarray of size 3: [1,2,3].
Total continuous subarrays = 3 + 2 + 1 = 6.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 109
Complexity Analysis
- Time Complexity: O(n)
- Space Complexity: O(1)
2762. Continuous Subarrays LeetCode Solution in C++
class Solution {
public:
long long continuousSubarrays(vector<int>& nums) {
long ans = 1; // [nums[0]]
int left = nums[0] - 2;
int right = nums[0] + 2;
int l = 0;
// nums[l..r] is a valid window with range in [left, right].
for (int r = 1; r < nums.size(); r++) {
if (left <= nums[r] && nums[r] <= right) {
left = max(left, nums[r] - 2);
right = min(right, nums[r] + 2);
} else {
// nums[r] is out-of-bounds, so reconstruct the window.
left = nums[r] - 2;
right = nums[r] + 2;
l = r;
// If we consistently move leftward in each iteration, it implies that
// the entire left subarray satisfies the given condition. For every
// subarray with l in the range [0, r], the condition is met, preventing
// the code from reaching the final "else" condition. Instead, it stops
// at the "if" condition.
while (nums[r] - 2 <= nums[l] && nums[l] <= nums[r] + 2) {
left = max(left, nums[l] - 2);
right = min(right, nums[l] + 2);
--l;
}
++l;
}
// nums[l..r], nums[l + 1..r], ..., nums[r]
ans += r - l + 1;
}
return ans;
}
};
/* code provided by PROGIEZ */
2762. Continuous Subarrays LeetCode Solution in Java
class Solution {
public long continuousSubarrays(int[] nums) {
long ans = 1; // [nums[0]]
int left = nums[0] - 2;
int right = nums[0] + 2;
int l = 0;
// nums[l..r] is a valid window with range in [left, right].
for (int r = 1; r < nums.length; r++) {
if (left <= nums[r] && nums[r] <= right) {
left = Math.max(left, nums[r] - 2);
right = Math.min(right, nums[r] + 2);
} else {
// nums[r] is out-of-bounds, so reconstruct the window.
left = nums[r] - 2;
right = nums[r] + 2;
l = r;
// If we consistently move leftward in each iteration, it implies that
// the entire left subarray satisfies the given condition. For every
// subarray with l in the range [0, r], the condition is met, preventing
// the code from reaching the final "else" condition. Instead, it stops
// at the "if" condition.
while (nums[r] - 2 <= nums[l] && nums[l] <= nums[r] + 2) {
left = Math.max(left, nums[l] - 2);
right = Math.min(right, nums[l] + 2);
--l;
}
++l;
}
// nums[l..r], nums[l + 1..r], ..., nums[r]
ans += r - l + 1;
}
return ans;
}
}
// code provided by PROGIEZ
2762. Continuous Subarrays LeetCode Solution in Python
class Solution:
def continuousSubarrays(self, nums: list[int]) -> int:
ans = 1 # [nums[0]]
left = nums[0] - 2
right = nums[0] + 2
l = 0
# nums[l..r] is a valid window.
for r in range(1, len(nums)):
if left <= nums[r] <= right:
left = max(left, nums[r] - 2)
right = min(right, nums[r] + 2)
else:
# nums[r] is out-of-bounds, so reconstruct the window.
left = nums[r] - 2
right = nums[r] + 2
l = r
# If we consistently move leftward in each iteration, it implies that
# the entire left subarray satisfies the given condition. For every
# subarray with l in the range [0, r], the condition is met, preventing
# the code from reaching the final "else" condition. Instead, it stops
# at the "if" condition.
while nums[r] - 2 <= nums[l] <= nums[r] + 2:
left = max(left, nums[l] - 2)
right = min(right, nums[l] + 2)
l -= 1
l += 1
# nums[l..r], num[l + 1..r], ..., nums[r]
ans += r - l + 1
return ans
# code by PROGIEZ
Additional Resources
- Explore all LeetCode problem solutions at Progiez here
- Explore all problems on LeetCode website here
Happy Coding! Keep following PROGIEZ for more updates and solutions.